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ABSTRACT

Growth Potential at the Crossroads of Artificial Intelligence, Robotics, and Synthetic Biology.
Biomedical and bioengineering advancements are impeded by our incapacity to foretell how
biological systems will act. We are unable to extrapolate behaviour on a large scale from studies
conducted on a small scale, nor can we foretell how changes to genotype will impact phenotype.
Recent advances in machine learning have made it possible to get the necessary predictive power
without a deep mechanical knowledge. Having said that, training them requires massive amounts of
data. In order to create a wide variety of biological systems with good reproducibility, the quantity
and quality of data needed can only be met by combining synthetic biology with automation.
Advancements in predictive biology and better machine learning algorithms can be achieved through
consistent funding of research into the areas of synthetic biology, machine learning, and automation.
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Introduction

A shift from a descriptive to a design science has occurred within biology during the last 20
years, leading to significant changes in the field. Synthetic biology and genetic engineering
were both initiated by the revelation of DNA as a storehouse of genetic information and
recombinant DNA as a powerful tool for editing it. Beyond the traditional focus on
description and cataloguing in biology (e.g., Linnaean taxonomic classification or
phylogenetic tree development), synthetic biologists now seek to engineer biological
systems to meet specific requirements (e.g., producing a specific quantity of a medicinal
drug or specifically invading a particular type of cancer cell) [1-5].

From creating renewable biofuels to fight climate change to enhancing human health, this
shift towards industrialised synthetic biology is anticipated to impact the vast majority of
human endeavours. Synthetic spider silk and leather, vegan burgers that taste like meat,
sustainable skin-rejuvenating cosmetics, renewable biodiesel that powers Rio de Janeiro's
public bus system, and many more examples are currently available for purchase.

In this effort, new tools enable us to bioengineer cells faster than ever: CRISPR-enabled
genetic editing has revolutionized our ability to edit DNA in vivo, DNA synthesis
productivity improves as fast as Moore’s law, transcriptomics data volume has a doubling
rate of 7 months, and high-throughput workflows for proteomics and metabolomics are
emerging. Furthermore, the miniaturization and automation of these techniques through
microfluidic chips promise a future where data analysis rather than data production will be
the bottleneck in biological research.

Obstacles to an Exponential Increase in Synthetic Biology Productivity

However, despite new tools and exponentially increasing data volumes, synthetic biology
cannot yet fulfill its true potential due to our inability to predict the behavior of biological
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systems. Arguably, the most pressing problems are our inability to predict the phenotype of
biological systems when their DNA is altered, and the difficulty of using small scale
experiments to predict the behavior at large scales [6-18]. In general, while we can make the
DNA changes we intend on target cells, the end result on their behavior is usually
unpredictable.4 This limitation has led to a traditional bioengineering approach that involves
randomizing exper- imental efforts hoping for an improved result, or using arduously
gathered biological intuition. This approach is hardly scalable, and has resulted in long
development times: for example, it took 150 person-years of effort for heterologous
expression of the 16-enzyme artemisinin pathway, and 575 person-years of effort for
DuPont’s 1,3-propanediol. Furthermore, we lack the ability to extrapolate large-scale
behavior from small-scale experiments. In bioengineering, a key bottleneck is designing
fermentation systems that reliably scale up lab results (1-100 mL) to commercial volumes
(100—106 L). Failure to do so and meet production timelines resulted in the past in the
inability to address high-volume production, economic losses, and significantly decreased
investment in the field. Amyris, for example, had to announce major changes to its financing,
strategy, and production targets after falling significantly short of their target of producing
nine million liters of farnesene. In biomedical applications, we cannot use information on
cell culture experiments to reliably extrapolate the implications on human health. This short-
coming forces researchers to rely on proxy systems (animal models) such as mice, rats, pigs,
monkeys, or rabbits. These animal models imperfectly represent human biology in
biomedicine: the average rate of successful translation from animal models to clinical cancer
trials is less than 8%. These failures significantly contribute to the billion dollar figures
routinely cited for new drug development. While these two problems (predicting phenotype
from DNA and scaled behavior) are perhaps more evident in the field of synthetic biology,
they are shared with (and inherited from) the rest of biology. For example, it would be
transformative to predict (1) plant phenotype from its genome, (2) soil microbial community
impact on its environment and globally on Earth’s climate from the study of pure cultures,
or (3) mammalian metabolism from single cell studies. Any advance in these two problems
will positively impact other subfields of biology. Further hurdles facing synthetic biology
(e.g., product extraction and downstream purification, supplement precursor cost, toxicity,
long-term stability, reproducibility, cross-talk) are important, but less generally impactful if
solved [19-39].

Machine Learning’s Predictive Capabilities

Machine learning can provide predictive power without the need for detailed mechanistic
understanding, by learning the underlying regularities in experimental data. Training data is
used to statistically link a set of inputs to a set of outputs through models that are expressive
enough to represent almost any relationship, without being encumbered by biased
assumptions. In this vein, machine learning has been used to predict pathway dynamics,
optimize pathways through trans- lational control, diagnose skin cancer, detect tumors in
breast tissues, and predict DNA and RNA protein-binding sequences.8—10 Furthermore,
machine learning can be used to design synthetic biology systems: it can be used to learn the
relationship between phenotype and the genetic parts used in genetic circuits, thus allowing
more stable circuits. But machine learning algorithms are data-hungry: they require abundant
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data to be trained and be effective. The current revolution in machine learning was enabled
not by new techniques, but rather by (1) rising processing power and (2) the availability of
massive training libraries. Image identification in the field of artificial vision would have
most likely not attained superhuman performance if it had to be trained on photographs
recorded on photographic film and physically shipped from photographers to artificial
intelligence researchers. The availability of large image libraries enabled by automated
digital image acquisition through charge-coupled device (CCD) cameras, and its dispersal
through the Internet, have been key to its development [40-65].

Machine Learning Needs Automation to be Truly Effective

We cannot produce the quantity and quality of data needed for effective machine learning
without using automation. The situation we face in biology is akin to using mailed paper
pictures: most assays are low-throughput and manual, and most phenotypic data is produced
and analyzed within the same lab. Although this is beginning to change, the rate is not fast
enough to support machine learning approaches (except for the field of genomics). To make
matters worse, historical data not always meet the requirements for machine learning to be
effective (e.g., lack of standardized data collection), so it is important that new data are
collected with these needs in mind. Competitions such as the Critical Assessment of methods
of protein Structure Prediction (CASP) provide a good example of how to promote
community effort for this purpose.

Large-scale high-quality data is necessary but not sufficient: proper experimental design is
fundamental to leverage machine learning. Opportunities in this area run in both directions:
high-quality data generation for training machine learning algorithms necessitates
experimental designs that carefully consider the different effects influencing the response;
and machine learning can be used to choose the next set of experiments in order to improve
experimental data quality and reduce the estimation errors. In this area, “robot scientists”
(chemical experiment planners) have proven successful in synthetic chemistry, and are
expected to play an important role in synthetic biology [66-89].

Hence, we need to invest in capabilities that couple machine learning algorithms with high-
throughput, fast-turnaround, automated phenotyping approaches, to solve biological
problems whose solution is of wide applicability, Possible approaches involve robotic liquid
handler platforms, microfluidics, or cloud laboratories. Future challenges include acquiring
data in real time, developing comprehensive noninvasive assays, taking the human out of the
loop, and developing workflows and data standards that ensure reproducibility.

Academic research would greatly benefit from this approach, which is already being used in
industry. The availability of large amounts of high-quality data would enable computational
biologists to produce robust theories without the need of running their own experimental
facilities, and the theory produced by these data sets would allow experimentalists to better
design experiments and tackle questions of general relevance. Furthermore, this division of
labor would enable higher productivity and allow for addressing more ambitious biological
guestions. Indeed several academic biofoundries have recently appeared, which can provide
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the ideal environment for the integration of synthetic biology, machine learning, and
automation, if properly directed and resourced.

Conclusion

A significant opportunity lies in the integration of synthetic biology, machine learning, and
automation, enabling disruptive changes in both biology and computer science. This
integration can not only produce transformational synthetic biology applications for the
production of biomaterials, biofuels and biomedical applications, but also enable a better
mechanistic understanding. Unlike for other domains where machine learning is leveraged
productively , for many of the current synthetic biology applications we have a significant
(but not complete) knowledge of the underlying processes. Coupling the predictive ability
of machine learning models with the possibilities afforded by new synthetic biology tools to
easily modify the system components will allow us to probe and expand our mechanistic
understanding. We expect this improved understanding to help us generate new types of
machine learning algorithms: after all, machine learning staples such as genetic algorithms
and artificial neural networks were inspired by biological analogies. This integration will
require a tight multidisciplinary collaboration among biologists, mathe- maticians,
engineers, chemists, physicists, and computer scientists in order to be successful.
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